Author Affiliations
Abstract
1 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
3 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Metasurfaces composed of spatially arranged ultrathin subwavelength elements are promising photonic devices for manipulating optical wavefronts, with potential applications in holography, metalens, and multiplexing communications. Finding microstructures that meet light modulation requirements is always a challenge in designing metasurfaces, where parameter sweep, gradient-based inverse design, and topology optimization are the most commonly used design methods in which the massive electromagnetic iterations require the design computational cost and are sometimes prohibitive. Herein, we propose a fast inverse design method that combines a physics-based neural network surrogate model (NNSM) with an optimization algorithm. The NNSM, which can generate an accurate electromagnetic response from the geometric topologies of the meta-atoms, is constructed for electromagnetic iterations, and the optimization algorithm is used to search for the on-demand meta-atoms from the phase library established by the NNSM to realize an inverse design. This method addresses two important problems in metasurface design: fast and accurate electromagnetic wave phase prediction and inverse design through a single phase-shift value. As a proof-of-concept, we designed an orbital angular momentum (de)multiplexer based on a phase-type metasurface, and 200 Gbit/s quadrature-phase shift-keying signals were successfully transmitted with a bit error rate approaching 1.67×10-6. Because the design is mainly based on an optimization algorithm, it can address the “one-to-many” inverse problem in other micro/nano devices such as integrated photonic circuits, waveguides, and nano-antennas.
Photonics Research
2022, 10(6): 06001462
Author Affiliations
Abstract
1 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
3 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
Optical logical operations demonstrate the key role of optical digital computing, which can perform general-purpose calculations and possess fast processing speed, low crosstalk, and high throughput. The logic states usually refer to linear momentums that are distinguished by intensity distributions, which blur the discrimination boundary and limit its sustainable applications. Here, we introduce orbital angular momentum (OAM) mode logical operations performed by optical diffractive neural networks (ODNNs). Using the OAM mode as a logic state not only can improve the parallel processing ability but also enhance the logic distinction and robustness of logical gates owing to the mode infinity and orthogonality. ODNN combining scalar diffraction theory and deep learning technology is designed to independently manipulate the mode and spatial position of multiple OAM modes, which allows for complex multilight modulation functions to respond to logic inputs. We show that few-layer ODNNs successfully implement the logical operations of AND, OR, NOT, NAND, and NOR in simulations. The logic units of XNOR and XOR are obtained by cascading the basic logical gates of AND, OR, and NOT, which can further constitute logical half-adder gates. Our demonstrations may provide a new avenue for optical logical operations and are expected to promote the practical application of optical digital computing.
Photonics Research
2021, 9(10): 10002116
Author Affiliations
Abstract
1 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, and Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
2 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
3 Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
4 Synergetic Innovation Center for Quantum Effects and Applications, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Photonic spin Hall effect (SHE) provides new opportunities for achieving spin-based photonics applications. However, flexibly manipulating the spin-dependent splitting (SDS) of photonic SHE and imposing extra phase modulation on the two spin components are always a challenge. Here, a controllable SHE mechanism based on phase function construction is reported. It is concluded that the phases with specific functional structures performing a coordinate translation are equivalent to integrating a gradient phase to the original phases. Hence, the original phase can be used for independent phase modulation, and the gradient phase originating from the coordinate translation is capable of manipulating the SDS. A metasurface with Pancharatnam–Berry phase that can impose conjugate phases to the two spin components of light is fabricated to verify this mechanism. By shifting the light position, the SDS is continuously manipulated in the visible region, which is successfully used for detecting the polarization ellipticity. The extra phase modulation is also performed with the original phase and thus enables measuring singular beams. It is anticipated that the controllable SHE manipulation method may open new avenues in the fields of spin photonics, optical sensing, optical communications, etc.
Photonics Research
2020, 8(6): 06000963
作者单位
摘要
1 深圳大学光电工程学院,二维材料光电科技国际合作教育部联合实验室,广东省二维材料信息功能器件与系统工程技术研究中心, 广东 深圳 518060
2 新加坡国立大学电气与计算机工程系, 新加坡 117576
超表面在柱矢量光束(CVB)产生方面具有效率高、器件精巧等优势,被广泛用于CVB产生及相关应用,但是该方法存在一个比较大的缺点:超表面的结构是固定的,因此生成的CVB的阶数是不可调的。为了解决该问题,在1550 nm波段实验证明了一种通过模式的加减操作来高效调控CVB偏振阶数的方法。通过将两块超表面级联在一起,实现了CVB偏振阶数的减法运算;在两块超表面之间插入一块半波片,通过反转CVB偏振阶数,实现了CVB偏振阶数的加法运算。最终实现了在-8~8范围内以2为步长的CVB偏振阶数调控操作,实验结果与Jones矩阵的计算结果完全吻合。
表面光学 二维电介质超表面 柱矢量光束 偏振阶数 
中国激光
2018, 45(7): 0705001
Junmin Liu 1,2†Yu Chen 2†Ying Li 2Han Zhang 2[ ... ]Shixiang Xu 1,*
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Black phosphorus (BP), with thickness-dependent direct energy bandgaps (0.3–2 eV), shows an enhanced nonlinear optical response at near- and mid-infrared wavelengths. In this paper, we present experimentally multilayer BP flakes coated on microfiber (BCM) as a saturable absorber with a modulation depth of 16% and a saturable intensity of 6.8 MW/cm2. After inserting BCM into an Er-doped fiber ring laser, a stable dual-wavelength Q-switched state with central wavelengths of 1542.4 nm and 1543.2 nm (with wavelength spacing as small as 0.8 nm) is obtained with the aid of two cascaded fiber Bragg gratings as a coarse wavelength selector. Moreover, single-wavelength Q-switched operation at 1542.4 nm or 1543.2 nm is also realized, which can be switched between the two wavelengths flexibly just by adjusting the intracavity birefringence. These results suggest that BP combined with the cascaded fiber gratings can provide a simple and feasible candidate for a multiwavelength fiber laser. Our fiber laser may have potential applications in terahertz generation, laser radar, and so on.
Lasers, fiber Mode-locked lasers Nonlinear optical materials Ultrafast nonlinear optics 
Photonics Research
2018, 6(3): 03000198

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!